Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus.

نویسندگان

  • E J Enemark
  • G Chen
  • D E Vaughn
  • A Stenlund
  • L Joshua-Tor
چکیده

Papillomaviral infection causes both benign and malignant lesions and is a necessary cause of cervical carcinoma. Replication of this virus requires the replication initiation proteins E1 and E2, which bind cooperatively at the origin of replication (ori) as an (E1)2-(E2)2-DNA complex. This is a precursor to larger E1 complexes that distort and unwind the ori. We present the crystal structure of the E1 DNA binding domain refined to 1.9 A resolution. Residues critical for DNA binding are located on an extended loop and an alpha helix. We identify the E1 dimerization surface by selective mutations at an E1/E1 interface observed in the crystal and propose a model for the (E1)2-DNA complex. These and other observations suggest how the E1 DNA binding domain orchestrates assembly of the hexameric helicase on the ori.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA-binding domain of human papillomavirus type 18 E1. Crystal structure, dimerization, and DNA binding.

High risk types of human papillomavirus, such as type 18 (HPV-18), cause cervical carcinoma, one of the most frequent causes of cancer death in women worldwide. DNA replication is one of the central processes in viral maintenance, and the machinery involved is an excellent target for the design of antiviral therapy. The papillomaviral DNA replication initiation protein E1 has origin recognition...

متن کامل

Surface mutagenesis of the bovine papillomavirus E1 DNA binding domain reveals residues required for multiple functions related to DNA replication.

The E1 protein from papillomaviruses is a multifunctional protein with complex functions required for the initiation of viral DNA replication. We have performed a surface mutagenesis of the well-characterized E1 DNA binding domain (DBD). We demonstrate that substitutions of multiple residues on the surface of the E1 DBD are defective for DNA replication without affecting the DNA binding activit...

متن کامل

Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep.

Adeno-associated virus (AAV), unique among animal viruses in its ability to integrate into a specific chromosomal location, is a promising vector for human gene therapy. AAV Replication (Rep) protein is essential for viral replication and integration, and its amino terminal domain possesses site-specific DNA binding and endonuclease activities required for replication initiation and integration...

متن کامل

Association of the human papillomavirus type 11 E1 protein with histone H1.

The E1 and E2 proteins are the only virus-encoded factors required for human papillomavirus (HPV) DNA replication. The E1 protein is a DNA helicase responsible for initiation of DNA replication at the viral origin. Its recruitment to the origin is facilitated by binding to E2, for which specific recognition elements are located at the origin. The remaining replication functions for the virus, p...

متن کامل

Identification of domains of the human papillomavirus type 11 E1 helicase involved in oligomerization and binding to the viral origin.

The E1 helicase of papillomavirus is required, in addition to host cell DNA replication factors, during the initiation and elongation phases of viral episome replication. During initiation, the viral E2 protein promotes the assembly of enzymatically active multimeric E1 complexes at the viral origin of DNA replication. In this study we used the two-hybrid system and chemical cross-linking to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2000